IITP at EmoInt-2017: Measuring Intensity of Emotions using Sentence Embeddings and Optimized Features
نویسندگان
چکیده
This paper describes the system that we submitted as part of our participation in the shared task on Emotion Intensity (EmoInt-2017). We propose a Long short term memory (LSTM) based architecture cascaded with Support Vector Regressor (SVR) for intensity prediction. We also employ Particle Swarm Optimization (PSO) based feature selection algorithm for obtaining an optimized feature set for training and evaluation. System evaluation shows interesting results on the four emotion datasets i.e. anger, fear, joy and sadness. In comparison to the other participating teams our system was ranked 5th in the competition.
منابع مشابه
LIPN-UAM at EmoInt-2017: Combination of Lexicon-based features and Sentence-level Vector Representations for Emotion Intensity Determination
This paper presents the combined LIPNUAM participation in the WASSA 2017 Shared Task on Emotion Intensity. In particular, the paper provides some highlights on the system that was presented to the shared task, partly based on the Tweetaneuse system used to participate in a French Sentiment Analysis task (DEFT2017). We combined lexicon-based features with sentence-level vector representations to...
متن کاملPrayas at EmoInt 2017: An Ensemble of Deep Neural Architectures for Emotion Intensity Prediction in Tweets
The paper describes the best performing system for EmoInt a shared task to predict the intensity of emotions in tweets. Intensity is a real valued score, between 0 and 1. The emotions are classified as anger, fear, joy and sadness. We apply three different deep neural network based models, which approach the problem from essentially different directions. Our final performance quantified by an a...
متن کاملYNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction
The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to c...
متن کاملIMS at EmoInt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning
Our submission to the WASSA-2017 shared task on the prediction of emotion intensity in tweets is a supervised learning method with extended lexicons of affective norms. We combine three main information sources in a random forrest regressor, namely (1), manually created resources, (2) automatically extended lexicons, and (3) the output of a neural network (CNN-LSTM) for sentence regression. All...
متن کاملUWat-Emote at EmoInt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings
This paper describes the UWaterloo affect prediction system developed for EmoInt2017. We delve into our feature selection approach for affect intensity, affect presence, sentiment intensity and sentiment presence lexica alongside pretrained word embeddings, which are utilized to extract emotion intensity signals from tweets in an ensemble learning approach. The system employs emotion specific m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017